Tuesday, December 31, 2013

The Massive Algal Blooms In The Gulf Of Oman Are Stunningly Beautiful From Spac e


The Massive Algal Blooms In The Gulf Of Oman Are Stunningly Beautiful From Space

Several of the world's largest desalination plants sit along the coast of the United Arab Emirates. Every year, they deliver 115 billion gallons of potable water to more than 550,000 people in Dubai alone. But the plants have had to slow or shut down production more frequently over the past decade because of an unexpected disturbance: massive algal blooms in the Gulf of Oman and the Persian Gulf.
The algae, known as red tide, clog pipes and filters at the plants. For warning of an approaching bloom, local authorities now consult data from a European Space Agency project, which began in 2012. When a passing satellite captures an image of an algal bloom (and software scans for the algae's chlorophyll, represented by the intensity of redness), officials alert plant managers, who then have a few days to decide how to adjust water production.

Wednesday, November 13, 2013

Power of Shunya - Times Now, India

Nualgi is featured on The Power of Shunya program on Times Now channel, a promo is available on Youtube - 

The program will be aired on Times Now on November 16th, Saturday at 5.30 pm and November 17th, Sunday at 9.30 am and 6.30 pm.

We will post the link to the full video when it becomes available on Times Now website - 

How can diatom technology clean up our water bodies and provide a lifeline for marine life?

Saturday, November 9, 2013

Toxic algae out break in 2013 fooled U.S. experts


Toxic algae out break in 2013 fooled U.S. experts

Western Lake Erie’s 2013 toxic algae outbreak was worse than expected, fooling the most advanced scientific prediction model the federal government has developed and covering more of the lake’s open water than any of the recent outbreaks except the 2011 record.
The University of Toledo’s top algae researcher, Tom Bridgeman, an associate professor of environmental science and a researcher at UT’s Lake Erie Center, presented a graphic that reflected that information at the UT College of Law’s 13th annual Great Lakes water-law conference on Friday.
The graphic showed this year’s bloom — while not a record-setter — went well beyond the Lake Erie islands and fanned out across more of the lake than expected. It didn’t get past Cleveland and penetrate the lake’s central basin as did the 2011 outbreak.
“The 2013 bloom was second only to 2011 in the open water,” Mr. Bridgeman told nearly 300 people who attended the seminar.
Another noteworthy feature of this year’s bloom: It was so dense along Lake Erie’s southern shoreline that a lot of it spent extended time underneath the water instead of on its surface.
High winds mixed it deep into the water. The lake’s predominant form of toxic algae, microcystis, tends to bubble up and float to the surface as it releases gases. But the mat was so thick that the weight of it kept a lot of the algae deep under water, Mr. Bridgeman said.
That helps explain why the water-treatment plant in Ottawa County’s Carroll Township, which serves 2,000 people, became so overwhelmed by the algae’s toxin, microcystin, that superintendent Henry Biggert took the unprecedented action of shutting it down. Mr. Biggert had service switched over temporarily in September to the system that serves the Port Clinton area.
That was the first time in Ohio history that a Lake Erie water-treatment plant was taken offline because of algae.
The Toledo water-treatment plant, northwest Ohio’s largest and most sophisticated, was able to neutralize the algae. But plant operators there also noticed higher-than-normal spikes and ended up getting $1 million more in emergency funds from Toledo City Council to ward off the threat.
The National Oceanic and Atmospheric Administration, using a newly developed scientific model, accurately predicted the 2013 bloom would be “significant,” but did not anticipate it being as bad as it was.
“They got close, but they underestimated what the bloom actually was,” Mr. Bridgeman said.
In a 110-page report planned for release later this month, a state task force trying to reduce western Lake Erie’s toxic algae will call for a 40 percent reduction in all forms of phosphorus entering northwest Ohio waterways.
The Ohio Phosphorus Task Force’s report, an update to its initial 2010 study, could affect farmers, sewage plant operators, large land-based businesses such as golf courses, and homeowners — anyone who uses or manages large amounts of fertilizers.
State and federal legislators are expected to use the task force recommendations when deciding whether to expand existing laws or adopt new ones.
Efforts could include a stronger focus on mixing nutrients in farm soil to reduce agricultural runoff into waterways, tighter controls on animal manure — including a ban on winter application — and an effort to fix sewage overflows faster.
The recommendations have been anticipated for months. They were made public by Mr. Bridgeman at the conference.
Mr. Bridgeman said the state task force chairman, Ohio Lake Erie Commission Executive Director Gail Hesse, gave him permission to release an excerpt of the report.
The seminar included discussions of similar algae problems in other parts of America, such as Florida, the Mississippi River, the Gulf of Mexico, and the Cheasapeake Bay.
“In Florida, we focus on the public-health threat,” said Monica Reimer, a Tallahassee lawyer employed by Earthjustice, one of the nation’s largest environmental law groups. “It’s not good enough to say fish are dead. Algae’s a public health threat.”
She said dozens of manatees died in the state in 2013 because they ingested toxic algae.
Emily Collins, an Ohio native who teaches at the University of Pittsburgh School of Law, likened the Cheasapeake Bay’s ecology to that of the Great Lakes.
She said people don’t realize how long it can take a system to recover once it’s been fouled: The full benefit of a 2009 executive order to clean the Cheasapeake, signed by President Obama shortly after he entered the White House, could take 20 to 40 years beyond the target date of 2025 for many of the pollution controls, Ms. Collins said.
Former Ohio Environmental Protection Agency Director Chris Korleski, who leads the U.S. EPA’s Great Lakes National Program Office in Chicago, was the keynote speaker. He said the task of restoring the Great Lakes will take decades, even with $1.3 billion allocated under the Great Lakes Restoration Initiative since 2010 to address issues such as algae and other forms of pollution, as well as invasive species.
Climate change complicates restoration efforts, Mr. Korleski said, noting that scientists now believe the greatest factor for algae is the amount of rain that falls between March 1 and June 30.
“Storms don’t feel like they did when I was a kid. They just don’t. And I don’t think that’s going to change anytime soon,” Mr. Korleski said.
“My prediction,” he added, “is we will continue to wrestle with this [algae] issue, we will continue to talk, and — over time — we will make progress.”

Saturday, November 2, 2013

Skeletal chains could help algae deliver drugs


Skeletal chains could help algae deliver drugs

Skeletons of single-celled algae have been modified while they are still alive to incorporate molecular chains that can harness chemical cargo. The algal bodies are then dissolved away so that their remains can be used to deliver drugs or clean up contaminated water.
The microscopic algae known as diatoms are supported by skeletons made of silica that are about 10 micrometres across. Each species grows intricate innards that yield a range of shapes, from barrels to stars and doughnuts. Tiny folds and crevices give diatom skeletons a much larger surface area than simple spheres or other nanoscale capsules, making them an ideal choice for drug delivery.
Previous work created artificial casts of the skeletons, usually made from biodegradable polymers, by coating the skeleton and then washing away the biological components. But modifying these casts to reliably carry drugs and other molecules has been a challenge, because the method requires harsh organic solvents applied in completely dry conditions that can be costly and time consuming to use. Now Abhay Pandit of the National University of Ireland, Galway, and his colleagues have found a way to make living diatoms incorporate thiols – sulphur-bearing molecular chains – directly into their skeletons as they grow, meaning their casts can carry drugs without having to be treated first.
"This is the first piece of a big puzzle to functionalise diatoms without disturbing the design of their intricate architecture in a substantial way," says Pandit.

Purifying algae

The team grew the diatom species Thalassiosira weissflogii in a nutrient-rich solution at room temperature and exposed it to a light-dark cycle that mimicked a natural day. They added thiol compounds to the growth solution multiple times over eight days, which allowed the algae to take up the molecules as they grew. Thiol-rich diatoms were then treated to make polymer casts. The chains remained attached to the casts even after the rest of the diatom's structure was dissolved away.
Molecular cargo such as drugs could be attached to the chains hanging from the cast's inner wall or outer surface. This would help deliver substances to parts of the body in medical treatments, says Pandit. Thiol chains can also bind with heavy metals so, in future, diatoms with more porous structures could be used for nanoscale water purification, he says.
Nils Kröger at the Dresden University of Technology in Germany is not convinced that modifying live diatoms will prove to be more efficient than growing thiols on casts of their skeletons. But he thinks figuring out the best approach will lead to myriad applications for chain-wielding diatoms.
"Having thiols exposed on the surface of diatoms opens the doors for introducing a host of biomolecules including enzymes, receptors and drugs," he says.
Journal reference: Nature CommunicationsDOI: 10.1038/ncomms3683

Sunday, October 27, 2013

A crash course in septic systems and how they’re damaging the environment


A crash course in septic systems and how they’re damaging the environment


Even if you have a septic system in your backyard, your waste ends up in the same place as everybody else’s.  The key difference is that waste flowing to a wastewater treatment plant is more likely to be treated using biological nutrient removal (BNR) technology that dramatically reduces the amount of nitrogen before discharging into a receiving waterbody (source).  Your local wastewater treatment plant is also more likely to be routinely inspected and maintained than your neighbor’s septic system because there are laws that require it.
As for Governor O’Malley’s proposed ban on septic systems in new large housing developments, he’s facing some stern opposition from rural counties and building associations.  Prospectors who have been holding on to agricultural land in the hope of one day selling it to a developer for big bucks are waking up to find their ship may have already sailed.  New residential developments in the middle of nowhere aren’t possible without septic systems.  New growth may actually be focused in existing service districts, otherwise known as Maryland’s Smart Growth areas.  I thought it was funny today when a woman on WYPR (local NPR affiliate) referred to Smart Growth as something the state tried 15 years ago.  Actually, we’ve been trying it every year since; it’s just experienced very marginal success.  A septic system ban would be a huge step in the right direction.

Nearly 40,000 oysters to grow in Baltimore's Inner Harbor


Nearly 40,000 oysters to grow in Baltimore's Inner Harbor

The Inner Harbor waters will soon be home to 37,500 new residents — baby oysters.
The Waterfront Partnership of Baltimore is teaming up with the Chesapeake Bay Foundation to plant five oyster gardens around the Inner Harbor on Tuesday. It’s another step in the Healthy Harbor initiative, the Waterfront Partnership’s mission to make Baltimore’s harbor swimmable and fishable by 2020.
“If we had a clean Chesapeake Bay we wouldn’t have to do any of this stuff,” saidAdam Lindquist, the Healthy Harbor coordinator for the Waterfront Partnership.
The gardens will be located at five points around the Inner Harbor: near the Rusty Scupper restaurant; near the Lightship “Chesapeake,” between Piers III and IV; between Piers IV and V; and in Fells Point.
The 75 oyster cages in the gardens will each hold 500 baby oysters, which will help clean the water as they mature over the next nine months. After they reach adulthood in June 2014, the oysters will be transported to the Fort Carroll Oyster Sanctuary.
The project costs about $15,000 per year for the materials and use of the Snow Goose, the Chesapeake Bay Foundation’s boat used to transport the oysters. The cost doesn’t include volunteer hours to maintain the gardens, Lindquist said. A grant from the Abell Foundation will help fund the initiative.
About 12 volunteers each from Brown Advisory, Legg Mason, BGE/Constellation Energy and T. Rowe Price, as well as students from Digital Harbor High School and the Green School of Baltimore, will be responsible for maintaining the oyster cages. That requires pulling them to the surface once a month to scrub off any barnacles, mussels or microorganisms.
If the program is successful, Lindquist said he hopes to repeat it next year with new oysters.
Oysters are filter feeders, meaning they clean the water as they feed on the algae that suffocates aquatic life. The Chesapeake Bay once had enough oysters to filter the entire volume of the bay in three days; today’s oyster population is only 1 percent of historical levels.
But oysters alone can’t clean the Inner Harbor. Stormwater runoff polluted with excess nutrients is the root cause of the harbor’s algae blooms, so Lindquist said the Waterfront Partnership will continue to focus on other measures outside the oyster program to get the harbor to a swimmable, fishable state.
“Oysters are not the only solution,” Lindquist said. “It’s just one more thing we can do to help restore the ecosystem, but really the harbor is just a reflection of the health of our neighborhoods.

Thursday, October 3, 2013

A mystery at the bottom of the Great Lakes food web


A mystery at the bottom of the Great Lakes food web

There’s a mystery at the very bottom of the Great Lakes food web.
Phytoplankton – the algae that are food for plankton which in turn feed fish – are behaving strangely. They’re surrounded by a nutrient they need to grow. But for some reason, they’re not using it.
The puzzle has big implications for how scientists think about the Great Lakes’ future in a warming world.
Tiny creatures
It’s a crisp sunny morning on the St. Lawrence River. All of the Great Lakes’ water flows through here on its way to the ocean.
Michael Twiss is leaning over the edge of his research boat, his face just a couple inches from the water’s surface. He swishes the water like he’s sniffing fine wine.
“Yup, there’s a fall bloom going on, because we’re at the end of the summer.”
DAVID: “That’s those little sparkly crystals in the water?”
“Yes, that’s what you’re seeing right there. Those are algae.”
Twiss is a limnologist at Clarkson University. He studies algae like this – the bottom of the food web that sustains the Great Lakes’ fishery.
The algae – also called phytoplankton – like to eat nitrate – nitrogen plus oxygen. In all of Great Lakes, there’s loads of nitrate. But get this. Twiss says they’re not eating it.
"The mystery is akin to being at a free smorgasbord and ordering out for pizza. You're going to have to wait longer to get your food, and you're going to have to pay for it."
“The mystery is akin to being at a free smorgasbord and ordering out for pizza. You’re going to have to wait longer to get your food, and you’re going to have to pay for it. So why aren’t they using this nutrient that’s available to them?”
Why should we care what the critters eat?
There are two reasons why this matters. First, if they ate more nitrate, they’d grow and become more food for fish.
Second, the algae would also eat more carbon from the atmosphere, just like trees do through photosynthesis.
“These lakes, which hold 20% of the world’s fresh water, play an important role in sequestering carbon and taking it out of the atmosphere and into the bottom of the lakes. That’s a natural process.”
In fact, the Great Lakes do a better job proportionally at sucking up carbon than the ocean does.
So, if only we could get those phytoplankton to eat more nitrate, we’d have more fish and we’d alleviate climate change at the same time, right?
Not so fast. Climate change cuts both ways.
Andy Bramburger is a researcher at the St. Lawrence River Institute in Cornwall, Ontario. He says the warmer climate is changing the kind of algae in the Lakes – from the kind that’s good for fish to the kind that causes toxic algal blooms and kills fish.
“With climate change and with these fluctuations in temperatures, and the rapid warming we’ve been seeing in the early parts of the spring and summer in recent years, we are tipping the balance in favor of algae that are not favorable to our use of waterways,” he says.
The detective cracks the case... a little
Michael Twiss recently made a tiny breakthrough in the phytoplankton mystery. Phytoplankton also need trace metals to eat the nitrate. So when he sprinkled the trace metal molybdenum into water samples – poof – the algae feasted like it was a smorgasbord.
Twiss’ hypothesis is that invasive species like zebra mussels have sucked too many metals and other nutrients out of the water. Twiss says it may be a new paradigm.
“A shift in the way the ecosystem is operating, and it’s up to us to understand how it operates so we can predict what will happen in the future, and so we can manage for change, particularly climate change.”
To protect our clean waters, our fishery, and our relationship with the Great Lakes in the face of climate change, scientists will have to puzzle out the mysteries at the bottom of the food web."
We have understood the food web and invented a Nano Silica based micro nutrient product to grow Diatom Algae in large lakes.

Friday, September 20, 2013

Super-Eruption Launched Algae Army Into the Sky


Super-Eruption Launched Algae Army Into the Sky

Slimy brown algae not only survived a wild ride into the stratosphere via a volcanic ash cloud, they landed on distant islands looking flawless, a new study finds.

"There's a crazy contrast between these delicate, glass-shelled organisms and one of the most powerful eruptions in Earth's history," said lead study author Alexa Van Eaton, a postdoctoral scholar at both the Cascades Volcano Observatory in Washington and Arizona State University.

The diatoms were launched by the Taupo super-eruption on New Zealand's North Island 25,000 years ago. More than 600 million cubic meters (20 billion cubic feet) of diatoms from a lake flew into the air, Van Eaton reported Sept. 6 in the journal Geology. Lumped together, the microscopic cells speckled throughout Taupo's ash layers would make a pile as big as Hawaii's famed Diamond Head volcanic cone.

Some diatoms drifted as far as the Chatham Islands, 525 miles (850 kilometers) east of New Zealand. "They just hitched a ride," Van Eaton said. The pristine shells in the Chatham Island ash suggest diatoms could infect new niches by coasting on atmospheric currents.
"If they made it there alive, this is one way microorganisms can travel and meet each other," Van Eaton told LiveScience's OurAmazingPlanet. "We know that ash from smaller events easily travels around the world." [5 Colossal Cones: Biggest Volcanoes on Earth]

World domination, cell by cell

Diatoms, a golden brown algae, rule Earth's waterways. From Antarctica's glacial lakes to acidic hot springs to unkempt home aquariums, diatoms are everywhere. It's a good thing. The tiny creatures pump out up to 50 percent of the planet's oxygen, said Edward Theriot, a diatom expert and evolutionary biologist at the University of Texas at Austin, who was not involved in the study.

The algae look like little petri dishes or footballs,depending on the species, and spend most of their lives drifting on currents. How diatoms manage to colonize new homes remains a mystery: They can't swim.

Yet diatoms get around. When Wyoming's Yellowstone Lake emerged from its mile-thick ice cover 14,000 years ago, diatoms quickly arrived, Theriot said. "They had to be blown in by some mechanism or carried in by water birds," he added.

Diatoms particularly love volcanic lakes, because they are the only creatures that build shells of glass. (Glass sponges, for instance, produce a skeleton of glass spicules — tiny spike-like structures — but not a hard shell.) Silica-rich magma often causes the volcanic explosions that leave behind lake-filled craters, and silica is the key ingredient in diatom shells. Yellowstone Lake, which sits in a caldera created by a super-eruption, contains so many diatoms that the lake sediments are mostly shells (85 percent by weight), Theriot said.

Now scientists know what happens to diatoms when a massive volcanolike Yellowstone blasts through a big lake.

Immaculate preservation

The Taupo Volcano super-eruption slammed through a deep lake that filled a rift valley, similar to the elongated lakes in East Africa. The combination of water and ash created a hellish dirty thunderstorm, with towering clouds and roaring winds. The detonation flung ash and algae upward at more than 250 mph (400 km/h), Van Eaton said. Volcanic hail (called accretionary lapilli) pelted the landscape for miles.

Van Eaton discovered the diatoms while examining the volcanic hail with a scanning electron microscope.

"The first time I ever saw them I was looking at these volcanic ashaggregates and, bam, these gorgeous little symmetrical shells were there," she said. "Their shells are immaculately preserved."

Van Eaton soon determined that one of the three diatom species entombed in the ash only lives on the North Island of New Zealand. This meant she could track the 25,000-year-old ash layers around the South Pacific with a unique biologic marker. The unique North Island diatoms turned up in a few inches of ash on the Chatham Islands. The diatoms' trip to the Chatham Islands took longer than it looks on a map. The prevailing winds blew west at the time, so the shells circled the Southern Hemisphere before landing on the islands, Van Eaton and her colleagues think.

Some of the diatoms even kept their color, both in ash close to the volcano and at the Chatham Islands. The color suggests they weren't cooked to extreme temperatures in the volcanic eruption, Van Eaton said.

Spores infect the sky

But even though the Taupo diatom shells are pristine, Theriot is doubtful any diatoms lived through the eruptions. Instead, he suspects diatom resting spores could travel the atmospheric currents, dropping out and colonizing new ecosystems. Diatoms fashion spores to ride out inhospitable changes in their environment. Two years ago, Danish researchers revived 100-year-old resting spores from muck in a local fjord. Resting spores have been found in clouds. The eruption could have launched spores from the lake bottom into the atmosphere, Theriot said.

"I and many others have joked about Yellowstone blowing up again and dispersing the diatomite that is being created at the bottom of Yellowstone Lake," Theriot said. "This is the most thoroughly studied and best documented example of this phenomenon, and so it really says maybe we can add volcanoes to the list of possibilities [of how diatoms spread]. And volcanoes would be particularly effective." [Infographic: The Geology of Yellowstone]
Van Eaton hopes the discovery will prompt other scientists to search for microscopic life in "wet eruptions," where magma hit water.

"This is potentially another tool to pinpoint where ash deposits come from," Van Eaton said. "If the work is done to characterize the kinds of microbes that are unique to an area, then it could give you a biogenic fingerprint for your eruption deposits. This has likely been going on in modern eruptions, but no one has taken the time to look for them."

Ash travels hundreds of miles, but once it's far from its source, linking a few inches of glass back to a single volcano becomes difficult, particularly in regions like the South Pacific, where volcanoes pop off all the time.

But Theriot is skeptical that diatoms will prove to be a useful tool for tracking volcanic ash. Diatoms are so global that endemic species — known only to one place — are hard to find, he said. "If you found diatoms in ash deposits in a bog in Ohio, you would have no idea if it was from Yellowstone or from that bog," Theriot said. "It would take a really extraordinary set of circumstances, like this New Zealand [diatom] that is clearly out of place, to be convincing that the diatoms had blown in with the ash."

Monday, September 9, 2013

Koocanusa algae bloom kills thousands of salmon


Koocanusa algae bloom kills thousands of salmon

Two weeks ago there was a mass die-off of Kokanee Salmon in Lake Koocanusa. Thousands of fish floated on the surface near the Canada-US border.
Area B Director Heath Slee brought up the subject at the Regional District of East Kootenay meeting Friday, Sept. 6.

"Some of the local people complained that they saw all these carcasses of kokanee salmon floating upside down on the lake and in the reservoir," Slee said. That was the first thing he's heard about it happening two weeks ago.

He found that Montana Fish, Wildlife and Parks biologists attributed the die-off to a blue-green algae bloom.

The kokanee, 8-10 inches in size, came to the surface because of the long stretch of hot, dry weather this summer on Koocanusa.

"The two-year-old salmon came up to feed on this algae, which they typically do, and once they ingest this algae, it affects their bladder and so they are not able to dive down into the cooler waters again,"
he said, adding that unless they can reach those cooler depths, they cannot thrive.

"So consequently there was a huge die-off. It hasn't affected the over-species, from what I've been told, it's not harmful, it's not going to affect the wildlife," Slee said, adding that if you're out there fishing and catching salmon there's also no concern about eating the salmon.

Slee said it has happened before and biologists believe it is the algae that caused it.

The salmon would be becoming mature and spawning in the fall of 2014, so it may have an effect on future stock.

"Unfortunately a lot of those salmon have died," Slee said. "I don't know what the end result will be or how it will affect the salmon fishery next summer, but it has been a major die-off at this stage and it has hurt in the past."

According to an article in the Tobacco Valley News, Montana biologist Mike Hensley estimated that 10,000 juvenile kokanee were dead as a result of the algae bloom.
Slee said he hadn't heard of any local biologists looking into the situation, but said they were probably aware of the die-off.

The kokanee were introduced into Koocanusa a number of years ago and this year's salmon will begin spawning in the creeks and rivers in the next few weeks.

Friday, September 6, 2013

Fertilizer grows crops and kills fish ???


The Gulf of Mexico’s Zombie Dead Zone

"The National Oceanic and Atmospheric Administration (NOAA) hypothesizes the annual agricultural and treated sewage discharge into the Gulf of Mexico via the Mississippi River exceeds 1,700,000 tons or 3,400,000,000 pounds of potassium and nitrogen. To put that into perspective, it’s the equivalent of dumping 168 million 20 pound bags of fertilizer directly into the Gulf."

Conundrum. Sadly, the Dead Zone is created by essential agriculturally-based, nutrient rich (i.e., phosphorus, nitrogen and potassium) fertilizers. These elements find their way into the warm waters of the Gulf via the Mississippi River and its tributaries. Scientists point to the recent spree of heavy rains and floods in the Midwest and subsequent agricultural crop run-offs for the heavy influx of nutrients. Interestingly, the most negatively affected species are shellfish, as they have limited mobility and are typically unable to escape the devastating effects of the Dead Zone."

Agriculture and Plants killing animals / fish ?

Wednesday, September 4, 2013

Lake Ontario algal bloom is big enough to be seen from space

Lake Ontario algal bloom is big enough to be seen from space


Astronauts on board the International Space Station spotted something unusual as they flew over North America on August 24th — the normally blue waters of Lake Ontario had changed to a vibrant green hue!
The reason for this was a population explosion blue-green algae in the lake water. These 'algal blooms' are seen quite often in the Great Lakes during the summer months, but ones of this extent are usually seen in Lake Erie (you can even see that the western part of Lake Erie has a smaller bloom going on at the same time). According to NASA's Earth Observatory, the Aqua satellite captured a view of this at the same time (you can see it here).
Algal blooms happen when there's a combination of warm water and lots of nutrients, from sources like sewage and fertilizers making their way into the lakes. The algae feast on the nutrients, spurred on by the warmth, and multiply rapidly.
Algal blooms can cause health problems for anyone drinking the water or swimming in it, as the algae, called cyanobacteria, can produce toxins as they eat. Even without the toxins, the blooms also threaten life in the lake, as the algae consume all the oxygen in the water, causing the fish to suffocate.
Although these blooms still happen due to other sources, it was scientists working at theExperimental Lakes Area, in northwestern Ontario, that discovered the link between these blooms and phosphates in our cleaning products. The future of the ELA was in jeopardy until recently, but the scientists there will now be continuing their world-renowned work, thanks to new commitmentsby the Ontario government and the International Institute for Sustainable Development in Manitoba.

Sunday, September 1, 2013

The beauty of Diatoms - Video


The beauty of Diatoms

by Dr Mark Hildebrand
Scripps Institute of Oceanography

Friday, August 23, 2013

Brown Tide in Florida - Aureoumbra lagunensis.


NCCOS Responds to Harmful Algal Bloom Event Threatening Florida’s Indian River Lagoon

The NCCOS Harmful Algal Bloom Event Response Program approved a request supporting rapid response to a harmful algal bloom (HAB) in the Indian River Lagoon system of East Central Florida. Dr. Chris Gobler from Stonybrook University will work with the St. Johns River Water Management District to map the extent of the 2013 Brown Tide bloom in Indian River and Mosquito LagoonsDr. Gobler and his team will assess bloom effects on zooplankton grazing and the role of nutrients in promoting blooms, and help convene a September public forum hosted by the not-for-profit Marine Discovery Center. This follows a 2012 NCCOS Event Response effort that documented the brown tide in these Florida lagoons, previously found only in Texas, and that produced a new rapid, quantifiable genetic detection method.

Harmful Algae from Brown Tides in Texas Now Appearing in Florida Waters

Picture of sampling the brown tide in the Florida Indian River lagoon system
Chris Gobler Lab team member sampling the Florida brown tide in the Indian River Lagoon system. Credit: Florian Koch
A recently available in press research publication authored by NCCOS-supported Stony Brook University Professor Dr. Chris Gobler confirms the novel brown tide bloom that occurred in 2012 in the Indian River Lagoon system along the east coast of Florida was caused by the algal species Aureoumbra lagunensis.
The in press article provides results from a NCCOS funded HAB response project led by Dr. Gobler to document the first-ever occurrence of a bloom of A. lagunensis bloom in Florida, consider possible causes, and determine environmental and ecological impacts.
Dr. Gobler also developed a new rapid, quantifiable genetic detection method for A. lagunensis. Previously such blooms had only occurred in the Texas estuaries of Laguna Madre and Baffin Bay where they persisted for decades and caused major disruption.
Among the potential ecological impacts reported, juvenile northern hard clams (a.k.a. quahog) and eastern oysters filtered brown tide bloom water at lower rates than usual and juveniles that settled out to grow were significantly smaller than prior years.
Both cultured and wild populations of these shellfish species suffered mass die offs during the 2012 bloom.  The decline of the bloom was linked to near hypoxic conditions and an unusually high number of fish kills.
Picture of brown tide in the Florida Indian River lagoon system
Brown tide in the Florida Indian River Lagoon system. Credit: Florian Koch
The study discusses the potential for further expansion of the range of A. lagunensis blooms in Florida and Georgia and for the likely re-occurrence of blooms once established in an estuary. In line with these findings, Dr. Gobler and Florida officials began tracking the return of brown tide to the Indian River Lagoon system in May of 2013.
This publication and study was supported by NCCOS Harmful Algal Bloom Event Response Program.

Thursday, August 22, 2013

Lake Erie algae bloom intensifying


Lake Erie algae bloom intensifying

A new report this week shows the algae bloom in Lake Erie is intensifying.
It's more than just unsightly.  It's a big threat to the multi-billion dollar tourism industry.
Captain Rick Unger is one of hundreds of charter boat operators on Lake Erie.
"We've been seeing a lot of blooms," says Unger, the owner of Chief's Charters. "They're out there."
A new report this week warns the algae bloom has intensified.  There may be patches of green scum from the Bass Islands west to Maumee Bay.
Meanwhile, the state warning remains in effect at Maumee Bay State Park where it looks like green paint is washing ashore.
The health advisory at the beach means the level of bad bacteria in the water has reached unsafe levels there and could make you sick.
"It's a threat to every business in Northwest Ohio," says Unger.
"The algal bloom in Maumee Bay, particularly, is very large, very intense right now," says Dr. Thomas Bridgeman who works at the University of Toledo and studies these types of blue-green algae blooms in the Great Lakes.
Bridgeman says this year's bloom isn't as large as the massive blob that stretched all the way to Cleveland in 2011, but it's larger than last year.    
"If 2011 becomes the new normal, Lake Erie would be in serious, serious trouble," says Bridgeman.  "It's already in trouble. But if 2011 became the new normal then I would fear for the potential collapse of our fisheries and recreational industries along Lake Erie."
Tourism in Ohio is an $11 billion industry.  $1.2 billion of that is from fishing.
"This is a problem we can fix," says Unger.
Unger is also the President of the Lake Erie Charter Boat Association which has been working with lawmakers for years to fight the fertilizer run-off into the water.
"All of them understand the resource is too valuable to lose and they're all working hard for a solution," says Unger.